
Local overlaps, heterogeneities and the local fluctuation dissipation relations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 10773

(http://iopscience.iop.org/0305-4470/36/43/007)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/43
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 10773–10789 PII: S0305-4470(03)63793-5

Local overlaps, heterogeneities and the local
fluctuation dissipation relations

Giorgio Parisi

Dipartimento di Fisica, INFM, SMC and INFN, Università di Roma La Sapienza, P. A Moro 2,
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Abstract
In this paper I introduce the probability distribution of the local overlaps in
spin glasses. The properties of the local overlaps are studied in detail. These
quantities are related to the recently proposed local version of the fluctuation
dissipation relations: using the general principle of stochastic stability these
local fluctuation dissipation relations can be proved in a way that is very similar
to the usual proof of the fluctuation dissipation relations for intensive quantities.
The local overlap and its probability distribution play a crucial role in this proof.
Similar arguments can be used to prove that all sites in an ageing experiment
remain at the same effective temperature at the same time.

PACS numbers: 75.10.Nr, 05.40.−a, 02.60.Cb

1. Introduction

Up to now in disordered systems the overlap and its distribution were considered as global
quantities, which were defined for the whole system [1]. However, in systems with quenched
disorder, it is possible to define (in a non-trivial way) a local overlap that has a point-dependent
probability distribution [2]. This new object has remarkable properties that we explore in this
paper.

One of the most interesting results is related to the local generalization of fluctuation
dissipation relations (FDR) in off-equilibrium dynamics.

It is well known that the FDR in off-equilibrium dynamics are a crucial tool for exploring
the landscape of a disordered system [3–6]. These FDR are different from the predictions of
the fluctuation dissipation theorem at equilibrium. They can be expressed in a rather simple
form that can be easily interpreted from the theoretical point of view. Moreover, the main
parameter entering the FDR has a simple interpretation from the point of view of equilibrium
statistical mechanics [7–10]. This fact has the consequence that for a given system the form
of the FDR is universal in off-equilibrium dynamics, i.e. it is independent of the details of the
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dynamics and the way in which the system is put in an off-equilibrium situation (as soon as
the system remains slightly out of equilibrium).

In the most studied case, one considers observables that are the average over the whole
sample [1, 11–16]. In this case the static–dynamic relations connect the FDR to the static
average of global quantities. Recently there have been a few investigations on FDR that
involve only given local variables [17–19]. It turns out that using the probability distribution
of the single spin overlap, it is possible to give a theoretical foundation to these local FDR and
derive the appropriate static–dynamic relations, which involve the probability distribution of
the local overlap [2, 18].

The paper is organized as follows. In section 2 we define our main new theoretical tool:
the probability distribution of the local overlap; we compute its properties in a few simple
cases. In section 3 we recall the main facts about the usual global FDR, while in section 4
we recall the proposed local FDR [2, 18, 19]. In section 5 we derive the local FDR from
general principles, prove the appropriate static–dynamic relations and we show that in an
ageing regime, in spite of the existence of local heterogeneities, all sites at a given time must
be characterized by the same effective temperature. In section 6, before the conclusions, we
discuss some methods to compute the probability distribution of the local overlap. Finally, in
the appendix, we present some considerations on systems with finite volume.

2. The local overlap distribution

2.1. The formulation of the problem

Our aim is to define the local overlap probability distribution Pi(qi). Usually the global
overlap of two equilibrium configurations (σ and τ ) is defined as

q =
∑

i qi

N
(1)

where qi = σiτi . For a given sample we can define the overlap probability distribution PJ (q),
where J labels the sample. In the glassy phase the function PJ (q) depends on the sample also
for very large samples: the global overlap probability distribution PJ (q) is not a self-averaging
quantity. The physically interesting quantity is

P(q) = PJ (q) (2)

where the bar denotes the average over the couplings J .
In a different approach [10] one considers the response of the system to the appropriate

perturbation and in this way one can define for a given sample a function Pr(q), which for large
systems should be self-averaging, i.e. J -independent. This new order parameter distribution
codes the thermodynamic responses of the system to random perturbations. According to the
principle of stochastic stability [7–10], it should coincide with P(q).

It is evident that the definition of the local overlap must be rather different from that of the
global overlap. Indeed, in a naive approach the local overlap of two equilibrium configurations
(i.e. σiτi) is always equal to ±1; if a naive definition is used the probability distribution of the
local overlap should be the sum of two delta functions at ±1: in this way one gets a trivial
result.

Moreover, our aim is to define a site-dependent, sample-dependent Pi(qi) such that

Pg(q) =
∫ ∏

i=1,N

(Pi(qi) dqi)δ

(∑
i qi

N
− q

)
(3)
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is a self-averaging quantity. In other words Pg(q) cannot coincide with PJ (q) but it should
be equal to Pr(q). In the following, we will extend the approach of [10] in order to arrive at a
definition of Pi(q) that satisfies the aforementioned properties.

The last requirement is rather important: indeed using the decomposition of the Gibbs
state into states (that will be discussed in detail later) we could propose that

P n
i (qi) ≡

∑
α,γ

wαwγ δ
(
qi − mα

i mα
i

)
. (4)

We shall not follow this path for three reasons:

• The decomposition of the Gibbs state into states is rather involved; it is better to use it at
the heuristic or at the metaphorical level, and define new quantities without using it.

• This definition does not satisfy the requirement of equation (3).
• The quantity P n

i (qi) is not related to the local fluctuation dissipation relation; moreover,
it is not a local quantity as long as it changes considerably when a far away perturbation
is introduced. It may be relevant in other contexts, but not here.

2.2. The definition of the local overlap

Let us start from a spin glass sample and consider M identical copies of our sample: we
introduce N × M σa

i variables where a = 1,M (eventually we send M to infinity) and N is
the (large) size of our sample (i = 1, N). The Hamiltonian of this Gibbs system is given by

HK(σ) =
∑

a=1,M

H(σ a) + εHR[σ ] (5)

where H(σa) is the Hamiltonian for a fixed choice of the couplings and HR[σ ] is a random
Hamiltonian that couples the different copies of the system. A possible choice is

HR[σ ] =
∑

a=1,M;i=1,N

Ka
i σ a

i σ a+1
i (6)

where the variables Ka
i are identically distributed independent random Gaussian variables with

zero average and variance 1. In this way, if the original system was d dimensional, the new
system has d + 1 dimensions, where the contiguous hyperplanes are randomly coupled. We
can consider other ways to weakly couple these M-systems; for example another possibility is
given by

HR[σ ] =
∑

a,b=1,M;i,j=1,N

K
a,b
i,j σ a

i σ b
j (7)

where the variables K are identically distributed independent random Gaussian variables with
zero average and variance (NM)−1.

As we shall see later the form of HR is not important: its task is to weakly couple the
different hyperplanes that correspond to different copies of our original system. The first
choice (equation (6)) is the simplest to visualize and it is the fastest for computer simulations,
and the last choice (equation (7)) is the simplest one to analyse from the theoretical point of
view. In the following, we do not need to assume any particular choice.

Our central hypothesis is that all intensive self-average quantities are smooth functions of
ε for small ε. This hypothesis is a kind of generalization of stochastic stability. According to
this hypothesis the dynamical local correlation functions and the response functions will go
uniformly in time to the values they have at ε = 0.
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We now consider two equilibrium configurations σ and τ in the case of non-zero ε and
let us define for given K the site-dependent overlap

qi(σ, τ ) =
∑

a=1,M σ a
i τ a

i

M
. (8)

We define the K-dependent probability distribution P K
i (q) as the probability distribution of

the previous overlap. If we average over K at fixed ε, we can define

P ε
i (q) = P K

i (q) (9)

where the bar denotes the average over K. We finally define

Pi(q) = lim
ε→0

P ε
i (q) (10)

where the limit ε → 0 is done after the limits M → ∞ and N → ∞ (alternatively we keep
εM and εN much larger than 1).

In order to be consistent with the usual approach, we should have that if we define

qt =
∑

i=1,N qi

N
(11)

the probability distribution Pt(q) of qt should be self-averaging (i.e. J -independent in the
infinite volume limit) and it should coincide with the function P(q) that is the average over J

of PJ (q):

Pt(q) = Pg(q) ≡ PJ (q). (12)

This crucial relation will be proved in the next section.
In a nutshell the construction is rather simple. We consider M weakly coupled copies of

the original lattice and in the limit M going to infinity we can define local thermodynamic
averages. We will assume that we also remain in the infinite volume limit. A discussion of
what happens for finite N but M = ∞ will be presented in the appendix.

2.3. Some heuristic considerations

What is the rationale of this baroque construction? The heuristic idea is simple. For finite N
and given J we can approximately decompose the usual Boltzmann expectation value 〈·〉 into
different states labelled by α:

〈·〉 =
∑

α

wα〈·〉α. (13)

If we define the state-dependent magnetizations

mα
i = 〈σi〉α (14)

we have that the overlap among two states is

qα,γ =
∑

i=1,N mα
i m

γ

i

N
(15)

and that the usual overlap distribution is given by

PJ (q) =
∑
α,γ

wαwγ δ(qα,γ − q). (16)

The average over J gives the usual P(q).
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However, we do not want to average over the J ; we want to stick to a given system.
In order to make a sensible self-averaging definition we have to consider an ensemble of
systems, therefore we will consider the original system plus a small random perturbation
εHR . However, if the expectation value of the random perturbation in the various states(
ER

α ≡ 〈HR〉α
)

is much larger than 1, the new w will be given by

wR
α (ε) = wα exp

(−βεER
α

)
∑

α wα exp
(−βεER

α

) (17)

and the states will be completely reshuffled. The quantity ER
α is typically of order εN1/2, so

that it is very large when N goes to infinity at fixed ε.
In a first approximation, we can assume that the set of states remains the same after

the perturbation also in the limit N goes to infinity at fixed ε, i.e. there should be a one
to one correspondence between each state before and after the perturbation. However,
the quantities exp

(−βER
α

)
have a huge range of variation and therefore those states that

dominate the thermodynamics before the perturbation have a new w of order ε(−AN1/2) and
are thermodynamically irrelevant after the perturbation. In other words if we consider the
overlap of the system at ε = 0 and ε �= 0, defined as

q(ε) =
∑

wR
α (ε)wαqα,α (18)

we find that q(ε) is discontinuous at ε = 0, i.e.

q(0) > lim
ε→0

q(ε). (19)

The way in which the subset of thermodynamically relevant states changes depends on
the distribution of the wα . However, the principle of stochastic stability tells us that we get the
same function P(J ) if we do the average over the random perturbation at fixed J or over the
ensemble of the J in the absence of the random perturbation. Generally speaking, stochastic
stability implies that the properties of the system computed at a given value of ε are smooth
functions of ε and that the two limits N → ∞ and ε → 0 do commute. This is a rather deep
statement if one considers equation (19).

At small non-zero ε the system of M copies of the original system (i.e. the Gibbs system)
can be considered a single system. As usual we can assume that the Gibbs system is a state A

with a probability wA and the state A of the Gibbs system is characterized by the fact that the
ath subsystem remains in the state αa (the set of the states α is the same as that at ε = 0). In
other words there is a one to one correspondence among the states of the Gibbs system and all
the possible functions αa (a = 1,M), where as usual α labels the states of the original system.

By changing the variables K we change the weights wA. We can thus write

qt =
∑
A,C

wAwC

∑
a=1,M qαa,γa

M
. (20)

It is clear that we have to prove that this way of generating the weights A and C is such that
the distribution of qt satisfies equation (12). This will be shown in the next section.

2.4. Two explicit cases

Let us consider here the previous construction in two cases where we can perform the relevant
computations in an explicit way.

The first case we consider is one step replica symmetry breaking. Here the original system
may remain in states labelled by an index α. Each state is characterized by a free energy fα



10778 G Parisi

and the probability of finding a state in the interval [f, f + df ] is given by

N (f ) = exp(mβ(f − f0)). (21)

The equilibrium state of the Gibbs system may be decomposed as

〈·〉 =
∑

α

wA〈·〉A. (22)

The equilibrium state of the Gibbs system is characterized by the weights wA. These
states will have the same distribution of probability (equation (21)). As we have seen, each
state A is characterized by variables αa that are different for each state. Let us consider two
states of the Gibbs system (A and C) that correspond to the variables αa and γa (for a = 1,M).
Therefore, we can compute their overlap as

q
A,C
i =

∑
a=1,M σ

αa

i τ
γa

i

M
=

∑
a=1,M m

αa

i m
γa

i

M
=

∑
a=1,M q

αa,γa

i

M
(23)

for A �= C and

q
A,A
i =

∑
a=1,M σ

αa

i τ
αa

i

M
=

∑
a=1,M

(
m

αa

i

)2

M
=

∑
a=1,M q

αa,αa

i

M
(24)

where σα
i (or σα

i ) is a generic equilibrium configuration of the state α. We have used the
notation

q
α,γ

i = mα
i m

γ

i (25)

and mα
i , the magnetization at the site i in the state α:

mα
i ≡ 〈σi〉α. (26)

In the limit M → ∞ we can use the law of large numbers and find with probability 1 that

q
A,C
i = q

α,γ

i ≡ q0
i q

A,A
i = q

α,α
i ≡ q1

i (27)

where the bar denotes the average over all the states (α and γ ). The key observation in the
proof of these results is that for a given state A the variables αa are correlated: for each value
of a, a random state is selected.

We finally find that

Pi(q) = mδ
(
q − q0

i

)
+ (1 − m)δ

(
q − q1

i

)
. (28)

In other words, the construction we have used performs automatically the average over all the
possible states. It is remarkable that in this case the value of m is constant all over the system,
and the site variability is present only in the values of q0

i and q1
i .

The same computations can be done in the case where replica symmetry is broken in
two steps. In this case the states can be clustered into families, each state is labelled by two
indices (e.g. c, γ or d, δ); the first index labels the family and the second index labels the state
in the given family. In this case we have two free energy distributions of the form given in
equation (21), one for the states (characterized by parameter ms) and one for the families
(characterized by parameter mf ), where ms > mf . In the same way as before we find

Pi(q) = mf δ
(
q − q0

i

)
+ (ms − mf )δ

(
q − q1

i

)
+ (1 − ms)δ

(
q − q2

i

)
(29)

where

q
c,γ ;d,δ

i = q0
i q

c,γ ;c,δ
i = q1

i q
c,γ ;cγ
i = q2

i . (30)

In the previous formulae we have assumed that c �= d and γ �= δ.
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This construction has some points of similarities with that introduced in [23]; however, it
differs in some crucial points. In this approach we have two kinds of quantities: the weights
that are global quantities, and the magnetizations that depend on the point.

For simplicity let us restrict our further analysis to the one step replica symmetry breaking.
In this case for each point we can reconstruct the probability distribution of qi if we know the
probability distribution dPi(m) of finding a magnetization mi at the site i in a generic state:

q0
i =

(∫
dPi(m)m

)2

q1
i =

∫
dPi(m)m2. (31)

It may be interesting to note that on the Bethe lattice, in the cases where one step replica
symmetry breaking is exact, the probability distribution Pi(m) depends only on the local
environment (the coupling of the nearby points) and it can be computed in the large N limit
by solving local equations [24, 25], suggesting that the probability distribution Pi(q) depends
on the local environment. This result will be proved in full generality in the next section.

3. The global fluctuation dissipation relations

In this section we will find a short summary of the main results concerning the global fluctuation
dissipation relations.

The usual equilibrium fluctuation theorem can be formulated as follows. If we consider
a pair of conjugated variables (e.g. the magnetic field and the magnetization), the response
function and the spontaneous fluctuations of the magnetization are deeply related.

Let us call Req(t) the integrated response (i.e. the variation of the magnetization at
time t when we add a magnetic field from time zero) and Ceq(t) the correlation between
the magnetization at time zero and time t. The fluctuation dissipation theorem implies that
we have Req(t) = β(Ceq(0) − Ceq(t)), where β = (kT )−1 and 3/2k is the Boltzmann–Drude
constant. If we eliminate the time and plot Req parametrically as a function of Ceq , we have
that

−dReq

dCeq

= β. (32)

The previous relation can be considered as the definition of the temperature and it is a
consequence of the zeroth law of thermodynamics.

The generalized FDR can be formulated as follows in an ageing system. Let us suppose
that the system is carried from high temperature to low temperature at time zero and it is in an
ageing regime. We can define a response function R(tw, t) as the variation of the magnetization
at time t when we add a magnetic field from time tw; in a similar way C(tw, t) is the correlation
between the magnetization at time tw and at time t.

We can also define a function Rtw(C) if we plot R(tw, t) versus C(tw, t) by eliminating
the time t (this function is interesting in the region t > tw where the response function is
different from zero). The FDR state that for large tw the function Rtw(C) converges to a
limiting function R(C). We finally define

−dR

dC
= βX(C). (33)

One finds that X(C) = 1 for C > C∞ = lim→∞ Ceq(t), and X(C) < 1 for C < C∞. The
shape of the function X(C) gives important information on the free energy landscape of the
problem, as discussed at length in the literature.

It has been shown that in a stochastically stable system the function X(C) is related to
the basic equilibrium properties of the system. Let us illustrate this point by considering for
definitiveness the case of a spin glass.
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Spin glasses are characterized by the presence of a quenched disorder (i.e. the coupling J

among spins). For a given probability distribution of J , there are quantities that do not depend
on the particular (generic) realization of J and are called self-averaging: the response function
and the correlation of the total magnetization belong to this category. In contrast, there are
other quantities that depend on the choice of J . A typical example of a non-self-averaging
quantity is given by the probability distribution of the overlap. For a fixed value of J , given
two equilibrium configurations σ and τ , we define the global overlap as

q(σ, τ ) =
∑

i=1,N σiτi

N
(34)

where N is the total number of spins. Let us suppose that there is a magnetic field (albeit
infinitesimal) such that the overlap is positive, otherwise the overlap should be defined as the
absolute value of the previous expression.

The probability of distribution of q is PJ (q) and it depends on J . The function P(q) is
defined as the average of PJ (q) over the different choices of the coupling J and obviously
depends on the probability distribution of the variable J .

It is convenient to introduce the function x(q) defined as

x(q) =
∫ q

0
P(q ′) dq ′ (35)

or equivalently

P(q) = dx (q)

dq
. (36)

Obviously x(q) = 1 in the region where q > qEA, where qEA is the maximum value of q
where P(q) is different from zero.

The announced relation among the dynamic FDR and the static quantities is simple

X(C) = x(C). (37)

We shall see later that this basic relation can be derived using the principle of stochastic
stability that asserts that thermodynamic properties of the system do not change too much if
we add a random perturbation to the Hamiltonian. All that is well known. In the next section
we shall see how to play the same music with local variables.

4. The local fluctuation dissipation relations

There are recent results that indicate that the FDR relation and the static–dynamic connection
can be generalized to local variables in systems where a quenched disorder is present and
ageing is heterogeneous [20, 17–19]. We shall see that these findings need a more general
framework to be explained.

For one given large sample in the ageing regime, we can consider the local integrated
response function Ri(tw, t), which is the variation of the magnetization at time t when we add
a magnetic field at point i starting at time tw. In a similar way the local correlation function
Ci(tw, t) is defined to be the correlation of the spin at point i with itself at two different times
(tw and t). Quite often in systems with quenched disorder, ageing is very heterogeneous: the
functions Ci and Ri change dramatically from one point to another.

It has been observed in simulations [18, 19] that local FDR seem to hold

−dRi

dCi

= βXi(C) (38)
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where Xi(C) has also strong variations with the site. It has also been suggested that in spite
of this strong heterogeneity, if we define the effective βeff

i at time t at the site i as

−dRi(tw, t)

dCi(tw, t)
= βXi(tw, t) ≡ βeff

i (tw, t) (39)

the quantity βeff
i (tw, t) does not depend on the site. In other words, a slow thermometer

[21, 22] coupled to a given site would measure (at a given time) the same temperature on the
site independently: different sites are thermometrically indistinguishable.

The reader may be confused: we said that βXi(C) fluctuates and βeff
i (tw, t) does not; as

both quantities are equal the two statements seem contradictory. However, what effectively
depend strongly on the site are the local correlations and the associated responses but not
the fluctuation–dissipation ratio (or equivalently the effective temperature). The effective
temperature, as a function of time, does not depend on the site, but the same quantity, as a
function of the correlation, does depend on the site because the correlation is a site-dependent
quantity.

These empirical results call for a general theoretical explanation [17]. The aim of this
paper is to show that these results are a consequence of stochastic stability in an appropriate
contest and that there is a local relation among statics and dynamics. In the next section we
will define in an appropriate way the local probability distribution of the overlap for a given
system at point i (i.e. Pi(q)). We will also define the function xi(q) as

xi(q) =
∫ q

0
Pi(q

′) dq ′ (40)

and show that the static–dynamic connection for local variables is very similar to that for
global variables and is given by

Xi(C) = xi(C). (41)

In order to prove the local FDR, that will be presented in the next section, it is convenient
to reconsider the definition of the correlation function Ci(tw, t). It is clear that Ci(tw, t) cannot
be measured by observing only one single history of our sample: σi(tw)σi(tw + t) = ±1. The
correlation function is obtained by averaging over all the possible histories, i.e. by repeating
the experiment M times and eventually sending M to infinity. In other words, the two time
local correlation functions are not self-averaging quantities as far as histories are concerned.

If we want to define the correlation in such a way that it can be measured by observing
a single history, we have to consider the Gibbsian system introduced in section 2. We can
consider M identical copies (or clones) of our sample, and the Hamiltonian in this Gibbs
system is given by

H0(σ ) =
∑

a=1,M

H(σ a). (42)

For a given history M-replicated systems, the correlation function can be defined as

Ci(tw, t) =
∑

a=1,M σ a
i (tw)σ a

i (t)

M
(43)

and in the limit M → ∞ of this quantity is self-averaging, i.e. it will be the same in the entire
history of the system. It is evident that the M systems are independent so that the average
of one Gibbsian system is equivalent to the average of M usual systems: it corresponds to
repeating the same experiment (or computer run) M times. A similar procedure can be done
for the response function.
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5. Perturbing the system

5.1. Global perturbation

As usual, we can obtain an expression for the probability distribution of the overlaps in terms
of the response of the system to an external perturbation. Let us consider for simplicity the
effect of adding to the Hamiltonian HK ≡ H0 + HR of the Gibbsian system (where different
replicas are already coupled) an extra perturbation given by

�H(1) ≡
∑

i=1,N,a=1,M

ha
i σ

a
i (44)

where the variables h are Gaussian random variables with zero average and variance δ.
By integration by parts, we find that for given K

〈�H(1)〉
NM

= δβ
∑

i=1,N,a=1,M

(
1 − 〈

σa
i

〉2)
NM

= δβ

∫
dqP δ

t (q)(1 − q) (45)

where P δ
t (q) is the function Pt(q) (i.e. the probability distribution of qt ) in the presence of the

Hamiltonian �H(1). If we assume that the limit δ → 0 is smooth, we have the relation

χ(1) ≡ lim
δ→0

〈�H(1)〉
δNM

= β

∫
dqPt (q)(1 − q) (46)

for the susceptibility χ1. The proof is identical to the standard one. On the other hand at
ε = 0, stochastic stability implies that

χ(1) = β

∫
dqP (q)(1 − q) (47)

where P(q) is the usual J average of the J -dependent probability distribution.
It is a trivial task to generalize the proof to the other susceptibilities. For example, if we

define

�H(2) ≡
∑

i=1,N,a=1,M,k=1,N,b=1,M

h
a,b
i,k σ a

i σ b
k (48)

where the variables h are Gaussian random variables with zero average and variance δ/(NM),
we get

χ(2) ≡ lim
δ→0

〈�H 2〉
δNM

= β

∫
dqPt (q)(1 − q2) = β

∫
dqP (q)(1 − q2). (49)

In this way we can compute all the moments of both functions Pt(q) and P(q) and they
coincide. The two functions are equal.

5.2. Local perturbation

We can now repeat the same steps as before but locally. Let us consider for simplicity the
effect of adding to the Hamiltonian HK(σ) an extra perturbation given by

�H
(1)
i ≡

∑
a=1,M

haσ a
i (50)

where the variables h are Gaussian random variables with zero average and variance δ. By
integration by parts we find that for given K〈

�H
(1)
i

〉
M

= δβ
∑

a=1,M

(
1 − 〈

σa
i

〉2)
M

= δβ

∫
dqPi(q)(1 − q). (51)
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Therefore, we have the relation

χ
(1)
i ≡ lim

δ→0

〈
�H

(1)
i

〉
δM

= β

∫
dqPi(q)(1 − q) (52)

for the susceptibility χ
(1)
i .

Let us consider an ageing system and add the perturbation �H
(1)
i at time tw. We have

χ
(1)
i (t) = lim

δ→0

〈
�H

(1)
i

〉
t
=

∑
a=1,M Ra

i (tw, t)

M
. (53)

However, in the limit small ε in the dynamics does not depend on the clone a so that we get

χ
(1)
i (tw, t) = Ri(tw, t). (54)

Assuming that

lim
t→∞ χ

(1)
i (tw, t) = χ

(1)
i (55)

we arrive at

lim
t→∞ Ri(tw, t ′) = χ

(1)
i = β

∫
dqPi(q)(1 − q). (56)

We can now copy mutatis mutandis the proof of the usual FDR. For example let us define

�H
(2)
i ≡

∑
a=1,M,b=1,M

ha,bσ a
i σ b

i (57)

where the variables h are Gaussian random variables with zero average and variance δ/(M).
The static susceptibility is given by〈

�H
(2)
i

〉
M

= δβ
∑

a,b=1,M

1 − 〈
σa

i σ b
i

〉2)
M

= δβ

∫
dqPi(q)(1 − q2). (58)

If we assume for simplicity a Langevin type of evolution, from the same steps of [10] we
have

χ
(2)
i (tw, t) = 2

∫ t

tw

dt ′ Ci(t
′, t)

∂Ri(t
′, t)

∂t ′
. (59)

For simplicity we assume that for large t ′, Ri(t
′, t) becomes a function of only Ci(t

′, t) (this
assumption is not necessary; indeed, using the formula for all the moments it is possible to
prove that equation (62) is automatically correct) and get

lim
t→∞ χ

(2)
i (tw, t) = 2

∫
dC CXi(C) (60)

where we have defined

Xi(t
′)(C(t ′, t)) = ∂Ri(t

′, t)
∂t ′

(
∂Ci(t

′, t)
∂t ′

)−1

(61)

and

Xi(C) = lim
t ′→∞

Xi(t
′)(C). (62)

If also in this case the limits t → ∞ and δ → 0 are exchanged, we get

lim
t→∞ χ

(2)
i (tw, t) = χ

(2)
i = β

∫
dqPi(q)(1 − q2). (63)
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Generalizing the previous arguments, we get

χ
(s)
i (t) = s

∫ t

tw

dt ′(Ci(t
′, t)s−1)

∂Ri(t
′, t)

∂t ′
= s

∫
dC Cs−1Xi(C)

= β

∫
dqPi(q)(1 − qs) = sβ

∫
xi(q)qs−1. (64)

We thus arrive at the conclusion that

Xi(C) = xi(C) ≡
∫ C

0
dqPi(q) dq. (65)

This is the local relation among the static and the local FDR.
A few remarks are in order:

• If we take a sequence of larger and larger systems, the dynamical quantities converge to
a well-defined limit when the volume goes to infinity. Therefore, also the local overlap
distribution Pi(q) goes to a limit when the volume goes to infinity: this property implies
that Pi(q) depends only on the local environment (i.e. the couplings J not too far from
the point i). It is clear that all the problems in defining the function PJ (q) in the infinite
volume limit, due to the difficulties in defining the equilibrium states in the infinite volume
limit, fade away because the function Pi(q) is not sensitive to the far away couplings or
to the boundary conditions. It is quite possible that the construction we have presented in
this paper is useful in a rigorous approach.

• The way in which we have coupled together our M clones is irrelevant. The only task
they do is to correlate the states of one clone with the states of another clone and this may
be implemented by any random coupling.

5.3. Bilocal perturbations

We are now ready to prove the thermometric indistinguishability of the sites. We consider two
far away sites i and k and apply a perturbation that depends on both the spins at i and the spins
at k.

A typical example is

�H
(3,2)
i,k ≡

∑
a1,a2,a3,b1,b2=1,M

ha1,a2,a3,b1,b2 σ
a1
i σ

a2
i σ

a3
i σ

b1
k σ

b2
k . (66)

where the variables h are Gaussian random variables with zero average and variance δ/M4.
In the same way as before, we get

lim
δ→0

〈
�H

(si ,sk)
i,k

〉
δβM

≡ χ
(si ,sk)
i,k = β

∫
dqi dqk P (qi, qk)(1 − (qi)

si (qk)
sk ) (67)

where P(qi, qk) is the probability distribution of qi and qk . If we compute the same quantity
in the ageing regime for very large time, we have that the same quantity must be equal to the
large time limit of∫ t

tw

dt

[
Xi(t)

∂C
si

i

∂t
C

sk

k + Xk(t)C
si

i

∂C
sk

k

∂t

]
. (68)

Imposing that the two expressions can be equal for arbitrary si and sk , one recovers the form
of P(qi, qk) in terms of Xi(t

′, t) and Xk(t
′, t). By imposing that P(qi, qk) is positive (i.e. it

does not contain a derivative of a delta function), we find that in the region of large t ′ one must
have

Xi(t
′, t) = Xk(t

′, t). (69)
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We finally obtain

P(qi, qk) =
∫ 1

0
dx δ(qi − qi(x))δ(qk − qk(x)) (70)

where qi(x) is the inverse function of xi(q).
The first equation is just thermometric indistinguishability of the sites during ageing while

the second equation has some interesting consequences that will be investigated elsewhere.
We note that the probability distribution of the local overlap Pi(qi), being related to a

dynamical quantity, must depend only on the local environment around the point i and therefore
it must have a straightforward limit when the volume of the system goes to infinity (e.g. it
should be independent of the boundary conditions). It is remarkable that for far away points
(i, k) the two probability distributions Pi(qi) and Pk(qk) are independent of each other, but
the joint probability distribution of qi and qk does not factorize as shown by equation (70), i.e.
P(qi, qk) �= P(qi)P (qk). In some sense equation (70) tells us that only the part of P(qi, qk)

that corresponds to a given temperature does factorize.

6. Computing the local overlap distribution

The formulae presented in the previous section are useful in defining the local overlap and
its distribution, but they are not handy as far as practical computations are concerned. The
distribution Pi(q) has rounded delta functions for finite M. On the other hand, the burden
of the numerical computation increases violently with M. The best thermalization method
(the parallel tempering) becomes slower and slower when the volume of the system (NM)

increases. It is convenient to obtain this kind of information using different methods.

6.1. Computing the moments

In many cases knowledge of the first few moments of the function Pi(q) is enough to compute
this function. This approach is very useful in the case where we have some a priori information
on the shape of this function. For example, in the case of one step broken replica symmetry,
knowledge of the first two moments and m completely determines the function Pi(q).

In other models, where the replica symmetry is broken in a continuous way, it is possible
that a good approximation is given by simple expressions such as

Pi(q) = θ
(
q − qEA

i

)
(1 − q)−1/2Qi(q) + mδ

(
q − qEA

i

)
(71)

where Qi(q) is a low degree polynomial. However, the validity of similar formulae may
strongly change from model to model.

The computation of the low moments is not computationally heavy. We consider the
Gibbsian system with fixed M. If σ and τ are two equilibrium configurations of the model, it
is possible to prove that〈 ∏

a=1,M

σ a
i τ a

i

〉
= q

(M)
i ≡

∫
dq qMPi(q) (72)

or more generally〈
σ

a1
i τ

a1
i . . . σ

ak

i τ
ak

i

〉 = q
(k)
i (73)

where the indices a are arbitrary as soon as they are all different (obviously k < M).
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The proof of the previous relation can be obtained by computing the local susceptibilities
such as equation (58). Let us consider the case k = 2. We could also define

�H
(2)
i =

(
M

M − 1

)1/2 ∑
a=1,M,b=1,M;a� =b

ha,b σ a
i σ b

i . (74)

The corresponding susceptibility does not depend on M and it is trivially equal to the previously
defined susceptibility when M → ∞. In other words〈

σa
i τ a

i σ b
i τ b

i

〉
(75)

does not depend on M,a and b as soon as a �= b.
This result can be checked in an explicit way in the two explicit cases discussed before,

equations (2) and (4).
The computation of the moment of order k involves only the thermalization of a system

with only kN sites and it can be done without too much computational effort for not too
large k.

6.2. Introducing a state reservoir

Another possibility, which is more interesting especially for analytic computations, consists
in noting that the local overlap distribution depends only on the local environment. Therefore,
we can embed the local environment in a large system, and the local properties should not
be related to that of the rest of the system as soon as the rest of the system has the same
distribution of states as the original system.

Let us consider a simple case: a spin glass model in three dimensions. Let us suppose
that within the required accuracy, knowledge of the couplings up to a distance R from the
site i determines the function Pi(q). Let us consider a system of size L > 4R with the same
probability distribution of the couplings, with the constraint however that there are two points
i1 and i2 such that the local environments of radius R around each of these two points (that are
at distance greater than 2R) are the same and equal to that of the original system at the point i.

In this case the same argument as before leads to the conclusions that if we take two
different equilibrium configurations σ and τ , we have that〈

σi1σi2τi1τi2

〉 = q
(2)
i (76)

where the bar denotes the average over the couplings that do not belong to the fixed
environment.

A different possibility would be to take two copies of the local environment and couple
the spins at the boundary of each copy to other spins that remain on a Bethe lattice. If the state
distribution of the Bethe lattice is the same as that of the three-dimensional lattice, one should
get identical results.

In both cases the main role of the system outside the local environment was to put the
local environment in all different possible states, with the correct probability distribution. In
a nutshell it played the role of a state reservoir. As long as the detailed nature of this reservoir
is not important, we can consider the simplest possible model for it. A very convenient choice
is the following: we model the interaction of the local environment with the rest of the world
by introducing some extra fields h and an extra term in the Hamiltonian given by∑

k∈S

hkσk (77)

where the sum is done over the spins of the surface (S). The free energy corresponding to a
given choice of the variables h is given by F [h] and the corresponding magnetization of the
site i is m[h].
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We should now model the ensembles of h and w. We should introduce the distribution of
the weight wα and for each state α, we should give the set of h.

Let us see how this can be done and consider only the simplest case: a system with one
step replica symmetry where we fix the value of m. In this case we can assume that w are
distributed according to the expression in equation (21). We can assume the variable hα has a
given probability distribution, e.g. one of the simplest possibilities is that

hα
k = hk + δhα

k (78)

where both hk and δhα
k are uncorrelated random variables with zero average and variance

�h(0) and �h(1). Different forms of the probability distribution of the fields h can be used;
however, if the local environment is sufficiently large, the result should not depend on the
form of this probability distribution or the variances �h(0) and �h(1).

One finally finds that the two parameters that identify the probability distribution, i.e. q0
i

and q1
i , are given respectively by

q0
i =

( ∑
α=1,A wα exp(−βF [hα])m[hα]∑

α=1,A wα exp(−βF [hα])

)2

(79)

q1
i =

∑
α=1,A wα exp(−βF [hα])m[hα]2∑

α=1,A wα exp(−βF [hα])

where A is a large number, the bar denotes the average over the magnetic field h and the
weights w. Using the techniques of [24], the average over w can be done and one obtains

q0
i =

( ∑
α=1,A exp(−βmF [hα])m[hα]∑

α=1,A exp(−βmF [hα])

)2

(80)

q1
i =

∑
α=1,A exp(−βmF [hα])m[hα]2∑

α=1,A exp(−βmF [hα])
.

Of course, if our model is a Bethe lattice, the computations are quite simple and we
reobtain the results of [24], i.e. a local version of equations [25].

7. Conclusions

The main results of this paper are the definition of a local probability distribution of the
overlap, which depends on the site for a fixed sample. The properties of this local probability
distribution are related to the local fluctuation dissipation relations, which automatically follow
from the present formalism. The property of thermometric indistinguishability of the sites
turns out to be a byproduct of our approach: during the ageing regime all the sites are
characterized by the same effective temperature.

The two time local correlation functions can be written as

Ci,(tw, t) = Ci(x(tw, t)) (81)

where the function Ci(x) is the inverse of the function xi(C) and can be obtained only
by static measurements. The whole local dependence of off-equilibrium correlations and
responses can be computed from static quantities. The only quantity that cannot be computed
from equilibrium consideration is the global effective temperature as a function of the two
times, i.e. βx(tw, t).
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The physical scenario that emerges is quite clear. The local overlap distribution can be
defined by averaging over the ensemble of the states of the system, and the introduction of the
Gibbs system is a technical tool for performing this average in a constructive way. During the
dynamics the system locally explores different states of the system in a random way. It should
not be surprising that the dynamical average is deeply connected to the static average on all
possible different states.
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Appendix

It is interesting to consider what happens if we look at the model with Hamiltonian∑
a=1,M

H(σ a) + ε
∑

a,b=1,M;i,j=1,N

K
a,b
i,j σ a

i σ b
j (82)

in the limit M → ∞ but with fixed N. In this case the second part of the Hamiltonian coincides
with that of the Sherrington–Kirkpatrick model.

For small enough ε one finds that the solution of the model is the replica symmetric one.
It depends on a parameter q, which can be found from the solution of the equations:

q =
∑

i=1,N mi[h]2

N
(83)

where the magnetization are obtained by considering the statistical average for one sample
with Hamiltonian

H(σ) +
∑

i

hiσi (84)

and the magnetic fields are random independent identically distributed Gaussian variables
with zero average and variance εq and the bar denotes the average over the fields h.

However, by increasing ε this solution may become unstable (De Almeida Touless line)
and at higher ε one has to look for replica broken solutions. A computation similar to the
original one shows that replica broken phase happens when ε2N = O(1) and this result is at
the origin of the condition ε2N 	 1.
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[25] Mézard M, Parisi G and Zecchina R 2002 Science 297 812


